Electrochemical immunoassay platform for high sensitivity protein detection based on redox-modified carbon nanotube labels.

نویسندگان

  • Wilanee Chunglok
  • Porntip Khownarumit
  • Patsamon Rijiravanich
  • Mithran Somasundrum
  • Werasak Surareungchai
چکیده

We report a highly sensitive immunoassay protocol based on the use of redox-modified multi-walled carbon nanotubes (MWNTs) as electrochemical labels. The MWNTs were coated with methylene blue (MB) at an optically-determined loading of 3.41 × 10(-3) mol g(-1), and were then attached to secondary antibodies (Ab(2)) by adsorption. As a model analyte mouse IgG was collected by primary antibody (Ab(1))-coated magnetic beads. Following binding of the MB-MWNT-Ab(2) conjugates, IgG could be measured by MB reduction. Using differential pulse voltammetry for quantification, IgG was calibrated with a dynamic range of 0.1 pg mL(-1) to 100 pg mL(-1). Given the different possible Ab(1)-MB-MWNT-Ab(2) orientations on the magnetic beads, it was likely that not all the MB communicated with the electrode. A greater quantity of MB could be accessed by using the Fe(CN)(6)(3-/4-) redox couple as a solution phase mediator. This enabled us to lower the dynamic range down to 5 fg mL(-1) to 100 fg mL(-1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient platform based on cupper complex-multiwalled carbon nanotube nanocomposite modified electrode for the determination of uric acid

A new voltammetric sensor for determination of uric acid (UA) by Cuppercomplex- multiwalled carbon nanotube (Cu-complex-CNT) nanocomposite modifiedcarbon paste electrode (CPE) is reported. The electrocatalytic behavior of theCu-complex-CNT nanocomposite modified CPE was studied in pH 2.0 phosphatebuffer solution by chronoamperometry (CA) and cyclic voltammetry (CV) in th...

متن کامل

Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode

In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...

متن کامل

Simultaneous Determination of Ascorbic Acid, Uric Acid and Tryptophan by Novel Carbon Nanotube Paste Electrode

In the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhance...

متن کامل

Simultaneous Determination of Ascorbic Acid, Uric Acid and Tryptophan by Novel Carbon Nanotube Paste Electrode

In the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhance...

متن کامل

A Certain Electrochemical Nanosensor Based on Functionalized Multi-Walled Carbon Nanotube for Determination of Cysteine in the Presence of Paracetamol

The modified glassy carbon electrode (GCE) was prepared with 6-amino-4-(3,4-dihydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (pyrazole derivative (AMPC)) and functionalized multi-walled carbon nanotubes. In this research, electrocatalytic activity of nanocomposite (AMPC/MWCNTs) has been studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 136 14  شماره 

صفحات  -

تاریخ انتشار 2011